Seismic behaviour and analysis of U-shaped RC walls

نویسندگان

  • Katrin Beyer
  • Sri Sritharan
  • Bozidar Stojadinovic
چکیده

In many countries of moderate to high seismicity, reinforced concrete (RC) core walls are used as lateral bracing systems in midto high-rise buildings where they typically accommodate lift shafts or stair cases. Unlike planar walls which provide horizontal strength and stiffness mainly in the in-plane direction of the wall, core walls provide bidirectional strength and stiffness. This feature complicates their inelastic behaviour which is not yet fully understood as experimental and numerical studies are still rather scarce when compared to planar walls. Therefore, current design codes use findings from planar walls while specific guidelines for the design and analysis of core walls are still lacking. In addition, simple analysis tools widely used by design engineers such as the plastic hinge model, have been derived and calibrated for columns, beams or planar walls and their suitability for core walls has been only marginally verified. For these reasons the current study focuses on: (1) improving the knowledge on the inelastic behaviour of U-shaped walls under bidirectional loading and (2) on extending easily applicable engineering type models, such as the plastic hinge model, to the analysis of U-shaped walls. The scope of the thesis is limited to U-shaped walls, which is the simplest type of core wall that still retains the key characteristics of such walls. The first part of the thesis focuses on understanding the behaviour of U-shaped walls under loading along the geometric diagonal of the section. This loading direction is not typically considered in the design process but it was found to determine the shear design of the flanges while the displacement capacity for this direction might be the lowest of all the loading directions. In order to address the behaviour under diagonal loading, two large-scale quasi-static cyclic tests on U-shaped walls were carried out. Failure mechanisms specific to diagonal loading and possible critical design aspects related to these failure modes were identified from the experimental results. In addition, the influence of the longitudinal reinforcement distribution on the wall behaviour was investigated. The second part of the thesis focuses on adapting equations used in plastic hinge model for the analysis of U-shaped walls. Plane section analyses and a shell element model validated against the experimental data were used to perform parametric studies on U-shaped walls. From the results of the parametric studies a new equation for the yield curvature for any direction of horizontal loading was proposed as well as a modified yield displacement equation that accounts for the partially cracked wall height at yield. With this equation, predictions of yield displacements were improved especially for very slender walls. Quantities that rely on the yield displacement, such as the effective stiffness of the wall were also better predicted when the cracked height was accounted for in the prediction. And finally, plastic hinge length equations were also modified to account for the variation with the different loading directions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERFORMANCE BASED OPTIMAL SEISMIC DESIGN OF RC SHEAR WALLS INCORPORATING SOIL–STRUCTURE INTERACTION USING CSS ALGORITHM

In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and per...

متن کامل

Seismic Behavior of the Partially Prefabricated Laminated RC Walls Under Different Axial Ratios

The partially prefabricated laminated (RC) walls mentioned is this kind of seismic prevention element with part prefabricated concrete plate and cast in place concrete plate. 4 typical laminated walls without openings, 4 laminated walls with openings, and 1 common cast-in-place RC walls were tested under cyclic test. The seismic behaviour were analysed by the finite element software based on th...

متن کامل

Development of a displacement-based design approach for modern mixed RC-URM wall structures

The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or ...

متن کامل

Influence of Masonry Infills Walls on the Seismic Behaviour of Multi-storey Waffle Slabs Rc Buildings

In this work, we analyze the influence of masonry infill walls on the seismic performance of waffle slabs reinforced concrete (RC) framed structures. We analyze buildings of three, five and eight storeys, which are representative for a big number of housings in Barcelona, Spain. Capacity spectra have been obtained by performing pushover analyses and we have used a simplified procedure to obtain...

متن کامل

Evaluation of Seismic Vulnerability of Reinforced Concrete Buildings Adjacent to the Deep Excavations

In this study, the effect of deep excavation on the seismic response of RC moment resisting building systems has been studied. Deep excavation can cause significant changes in the stress and strain levels of soil environment and also changes in the propagation of seismic waves. This leads to permanent displacements in the foundation system. In this study, three RC building systems, i.e. 5, 10, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016